Polski
русский
Українська

Scientists have named the conditions under which diamond eruptions occur on Earth

Dmytro IvancheskulNews
Continental formation leads to diamond eruptions on the Earth's surface

Tectonic plate faults, which occur during the formation of new continents on Earth, are the driving force behind the formation and eruption of diamond-rich magma from the Earth's interior.

This is stated in a study by an international team of scientists led by the University of Southampton, which was published in the journal Nature. The scientists' new theory may suggest where to look for new diamond deposits.

It is known that diamonds are formed under high pressure at a depth of about 150 kilometers over hundreds or even billions of years. They can usually be found in kimberlites, which are igneous rocks found in the oldest, thickest, and strongest parts of continents. Previously, scientists did not understand how and why kimberlites with diamonds appeared on the Earth's surface.

Now, scientists have discovered that the pattern of diamond eruption is cyclical and follows the rhythm of supercontinents, which assemble and disintegrate in a repeating pattern over time.

"Previously, we didn't know what process causes diamonds to suddenly erupt after spending millions - or billions - of years hidden 150 kilometers below the Earth's surface," said lead author Thomas Gernon, professor of earth sciences and chief researcher at the University of Southampton.

The study found that most kimberlite volcanoes erupted 20-30 million years after the tectonic breakup of the Earth's continents.

They also found other interesting things. According to Dr Thea Hincks, a senior researcher at the University of Southampton, kimberlite eruptions tend to gradually migrate from the continental margins to the interior at a rate that is the same on all continents.

This discovery prompted scientists to investigate what exactly causes this pattern. It turned out that the Earth's mantle - the layer between the crust and core - is disturbed by faults in the Earth's crust even at a distance of thousands of kilometers.

"We have found that the domino effect can explain how continental breakup leads to the formation of kimberlite magma," said Dr. Stephen Jones, associate professor of Earth systems at the University of Birmingham and co-author of the study.

As tectonic plates move apart, the base of the continental crust thins just as the crust on top stretches and forms valleys. When hot rock rises from the depths, it comes into contact with this broken boundary, cools, and sinks back down again, creating localized circulation zones.

One such unstable region can provoke a similar movement in neighboring regions, gradually migrating thousands of kilometers to the center of the continent. This corresponds to the real picture of kimberlite eruptions, which begin near rift zones and then move inland.

As for diamond eruptions from the depths of the Earth's crust, Gernon says it's all about mixing the right materials. The instability causes rocks from the upper mantle and the lower crust to start flowing against each other. This mixes the rock with the large amounts of water and carbon dioxide it contains, along with many of the key minerals in kimberlite, including diamonds.

According to Gernon, the result is an effect similar to shaking a bottle of champagne: an eruption with great explosive potential and buoyancy that brings kimberlites with diamonds to the surface.

The study may be useful not only for finding undiscovered diamond deposits but also for explaining why eruptions occur in regions that are usually stable after the breakup of a supercontinent.

Earlier, OBOZREVATEL also reported that a new supercontinent will appear on Earth in the future.

Subscribe to OBOZREVATEL on Telegram and Viber to keep up with the latest news

Other News

At the first opportunity: what things in the bathroom always need to be replaced

At the first opportunity: what things in the bathroom always need to be replaced

Mold can form in the room due to excessive humidity